
AD-A015 846

ÄmE
U^cmr ALG0RITHM F0R ASS0CIAT'«-

Mark E. Stickel

Carnegie-Menon University

Prepared for:

National Science Foundation
Advanced Research Projects Agency
Air Force Office of Scientific Research

June 1975

DiSTRIBUTED BY:

mn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

— - --■■ - -

—— m<^m

^
»■CUWlTv CLASSIFICATION or THIS PAOC<l*h»»< Daim Cnfud)

Block . O/Abstract

The algorithm eliminates the need for axiomatizing the associativity
and commutativity properties and returns a complete set of unifiers
without recourse to the indefinite generation of variants and instances
of the terms being unified required by previous solutions to the problem.

-UL.
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PkZZfWhmn Data Enftmd)

—

w^mf^w - - ■ ■ ■ "

A COMPLETE UNIFICATION ALGORITHM FOR

ASSOCIATIVE-COMMUTATIVE FUNCTIONS1 ^

by

Mark E Stickvl

Department J Computer Science

Carnegie-Mellon Univ«rsity

Pittsburgh, Pennsylvania

An imporl.nl compon.nl of m.eh.nic.l thwr.m proving «y.t.m« .r« unific.tion .Iforithm.

which find most («noral substitutions which, whon appliod to two oxpr.sssions, maK« th«m

•quivalont. Functions which aro associativa and commutativt (such as \h. arithmotic ad<<'tion

•no multiplication functions) cro oftan tha subject of mochanical theorem provirr An

•Igorithm which unifios forms whoso function is associativo and commutativo is presented horo.

Tho algorithm oliminatos the nood for aromatizing the associativity and commutativity

proportios and roturns a comploto sot of unifiors without rocourso to tho .ndofinito gonoration

of variants and instances of the terms oeing unified required by previous solutions to the

problem.

'Research supported by the National Science Foundation (GJ-28457X2) and by the Advanced
Research Projects Agency of the Secretary of the Office of Defense (F44620-73-C-0074).

GlorBUrrLrrsnR';ds'(IpM9r5r)'h ln1•rn,,i0n•, ^ <**»**• 0" Artificial Intelligence (Tbilisi,

lb

^MM^te^MMBHlMMIMMMMMMMI - MM^^M^mflM

" ■ " ■ I

InlroductiQn

Af th. cor. o« many th.or.m provmg «y.t.m, i, , uni(ic,,10n ,lf0ri,hm wh(eh „^

'or a p.(r .. mput .xpr.sslonS a 8.t of un-fymg «ubst.tut.on«. Mitnm.n1, lo th, y.ri.bl.s of

IN. .Xpr.stlons wh(ch maK. Ih. two .xpr«S1onS .qü(va,.nt Typ(C.(it th# .^^^

algor.thm of Robmson [6] for un.fyme atom.c formula, of th. fir.t ord.r Pr.dic.t. calculus in

resolution theorem proving [1]

Th.s worK tr.ats th. c«. of unHymg t.rms of th. f.rst ord.r pr.d.cat. calculus wtmrm

th. funct(on .s assoc.t.v. and commutat.v. Such functions ar. m.th.m.t.cally important mi

thus of (nt.r.st to d.v.lop.rs of th.or.m prov.ng programs. Exampl., of such function, .r,

th. artthm.tic addition and multiplication functions.

Th. cas. wh.r. th. function is simply commut.tiv. i. .„iiy handl.d by . trivial

ext.nSion Jo Robinson's unification algonthm which unit,« th. argum.rts of on. t.rm again.»

permutations of Hi. arguments of th« other t.rm.

Th. cas. wh.re th. function is s.mpl/ „sociativ. is quit, difficult and w. know of no

general solution Suggestive of the d.fficulty of this problem ,s th. fact that th.r. may b. an

mfmil. number of unif,ers for a pa,r of terms. For example, the t.rms f(xa) and f(ax, wh.r. f

i. associative, a is a constant, and x is a vanabl. has unifiers with KM. x.f(aa). x.f(aa.),

(We represent the argument Ustr of associativ. functions with no .xtra p,r.nth.s.,. i....

f(abc) rather than f(af(bc)) or f(f(ab)c))

Two principal approaches to handling assoc.at.vity or commutativity ar. availabl. The

f.rst. stand,rd approach is to represent the t.rms conventionally, i., f(af(bc)) or f(f(ab)c)

rather than f(abc). and ax.omat... th. associativity or commutat.vity prop.rty. The

associativity axiom would be f(xf(y2)H(f(xy),, and th, c0mmü,aljvj,y „^ wou|d b<|

<(xy).f(yx) These axioms could be appli.d usmg some equality inference rules such as

paramodulation [5]

The second approach represents assoctiv. funct.ons as functions with an arbitrary

i

um Ill I II

j^mmmmimmmtmm^mm^^^^^^^^^^'^^mmmmmm^^mmmmi^

number of ar|urT.«nt», i.«, uses f(abc) r«th«r Ihtn f(af(bc)) or f(f{«b)c) Spocial purpos«

unification algorithms aro providod for form« who«« function« ar« a««ociativ«, commutativo, or

both. £xampl«« of thi« approach in fir«t ordor prodicat« calculus thoorom proving ar« 1h«

work of Novins [2] and Slagl« [8] Th« algoriil'.m« for associativity, and for associativity and

commutativity ar« incomplot«, i«, th«y fail to raturn «II th« unifi«r« in torn« en««. An

•xampl« of this approach in th« ar«a of programming language« for problom solving i« th« us«

of th« «««ociativ« data typ« tupl« or /eclor and associativ« and commutativ« data typ« bag in

th« QA4 and QUSP languag«« [7,A]. Again, in thi« ca«« th« algorithm« for .^attorn matching

(unifying) th«s« «xpr«s«ions ar« incomplot«. In both th««« ca«««, th« incomplot« algorithms

ran b« augmented by 8 process which altar« th« input expressions to cause th« unification

algorithm appliod to th« altered expressions to return additional unifior«. Th« addition of thi«

process (Siagle's widening operation for th« first order predicat« calculus [8] and Stickel's

variabl« «putting oporation for «xpressions of QA4 and QLISP [9]) results in completeness

Widening and variabl« «plitting ar« both oporation« that must b« performed on on« or both

input expressions an arbitrary number of times, replacing single variabl«« of th« expressions

uniformly by two variable«; it i« essentially (repeated) paramoduiation by th« functionally

reflexive axiom.

An «xampl« of th« latter approach i« th« unification of f(abz) and f(xy) wh«r« f it

associativ« and commutativ«. Th« special purpose unification algcithm would return th«

unifi«rs {««-a, y»-f(bz)}, {x«-b, yH(az)), [ft, y«-f(ab)}, {xH(bi), y«-«), {xH(«z)r y«-b)t and

{x«-f(ab), y4-z}. But this i« an incomplete set of unifier« sine« th« possibility that th« value of

z is not wholly contained in either th« value of x or th« value of y is not represented After

performing a widening oporation on f(abz) resulting in Uabz^) by instantiating z by Uz^),

additional now unifier: such as {xH(aZ|), yH^), zHfz^)} ind (xH(«bZ]), y-fy

2«-f(2|22)l ar« returned by th« unification algorithm.

Related to this approach, though different in detail, is Plotkin's work on the th ory of

_.„_________

pppp^m^—r—- i ■■ ^ ~m mmwm - i > > - <

bu.ldmg in aquation«! (haorias [3] of which associativity and commutativity ar« •xamplcs. In

th« cas« cl associativity, PlotKm rttams terms in a normal form: right associative form,

although it could «quivalantly havo been our unpartnthtsizad form His equivalent of the

widening rule, the replacement of a variable by two new variables, is applied con-.inually

inside the unification algorithm rather than being used outside it. Thus his unification algorithm

may generate an infinite number of unifiers as opposed to a unification algorithm guaranteed

to produce a finite number of unifiers and a potentian, infinite process (widening) for altering

input« to the unification algorithm to obtain additional unifiers. The differeno M approaches

beems to be principally one of organization of the search process.

In this paper, we present a new special purpose unification algorithm which we call the

AC u.'iification algorithm for terms whose functions are associative and commutative which

returns ■ complete set of unifiers. This algorithm eliminates the need for axiomatizing

associativity and commutativity and also eliminates the cost of continually applying these

axioms which often results in much unnecessary or redundant computation. It also eliminates

tue need for using the process of widening or variable splitting whose necessity (for

discovering a complete set of unifiers in the case of unifying any particular pair of

expressions) is difficult to ascertain.

Terminology

Definition A Ifiun is defined to be

(1) a constant,

(2) a variable, or

(3) a function symbol succeeded by a list of »erms (the arguments of the function).

We shall use the symbols a, b, and c to represent constants, x, y, and z (possibly

indexed) \o represent variables, and f to represent a function which is associative and

commutative.

 - ■ ...

i'*!""" ' H^^^^^ui ia

DtiimtiQn A aubititutifln compontinl ic an ord«r«d pair of a variabl« v and a term t

writtan as v*-t. A substitution component denotes the assignment of the form to the variable

or the replacement of the variable by the form.

üefinition A substitution is a set of substitution :omponentt with distinct first elements,

<.m., distinct variables being substituted for Applying a substitution to an expression results in

tho replacement of those variables of the expression included among the first elements of th«

substitution components jy the correspondir; terms. The substitution components are applied

to the expression in parallel and no variable occurrence in the second element of a

substitr*ion component will be replaced even if the variable occurs as the first element in

another substitution component. Substitut ons will be represented by the symbols a and 9.

The application of substitution 9 to expression \ is denoted by A|. The composition of

substitutions §9 denotes the substitution whose effect is the same as first applying substitution

#, then applying substitution a, i.e., A(9«) « (Af)« for every expression A

DflflnitiOn A unifying substitution or uailifiJl of two expressions is a substitution which

when applied to. the two expressions results in equivalent expressions. In ordinary unification,

two expressions are equivalent if and only if they are identical. In unification of argument lists

of commutative functions, two expressions are equivilent if they have the same function

symbo and the same arguments in the tame or different order.

DfltlhtlOn Term s is an UUIAIUA of term t, and t is a generili2ation of s, if there exists

a substitution I such that M«s.

Similarly, substitution f is an instance (generalizition) of substitution * if, for every

term t, t# is an instance (generalization) of It.

Ibi AC Uniticition Algorithm

Wo present hero an algorithm for unifying two terms whose function is associative and

___________ __

-—— "-"■ ^

commutativ«. Terms will b« represented at if the function had an arbitrary number of

argumentt with no superfluous parentheses.

We will assume that the argument lists of the two terms being unified have no common

arguments. This presents no difficulty since no unifiers are lost and efficiency is gained if

common arguments are eliminated immediately. This is done by removing common arguments

a pair at a time, one from each of the argument lists. For example, before unifying f(xxyabc)

and f(bbbcz), the b's common to the two terms are removed yielding f(xxyac) and f(bbcz), and

the c's common to the two new terms are removed yielding f(xxya) and f(bbz). An example of

the utility of immediately removing common arguments is the unification of f(g(x)y) and

f(g(x)g(a)). If the g(x)'s common to the two terms are immediately removed, the unification

algorithm will return the moit general unifier {y«-g(a)}. If the common g(x)'s are retained,

unification will likely result in the generation of the additional less general unifier

{x*-a,y«-g(a)}.

The algorithm will be expressed partially in terms of an algorithm for the complete

unification of terms with an associative and commutative function with only variables as

arguments. The result of unifying such terms is an assignment to each variable of the terms

some sequence of terms. Each variable is assigned a term tj (v/hose function symbol is not f)

or a term f(t|Rl...t|n
nm) (with n1 occurrences of term tj as arguments of f). For such an

assignment to be a unifier, the only requirement is that for each term tj used in any

assignment there are the same number of occurrences of that term occurring as arguments of

f in each of the unified terms instantiated by the assignment. For example, in unifying

((x|X|X2X3) * d Uyj/iy^). 't term t is part of some assignment to one of the variables, then

2 times the number of occurrences of t in the assignment for Xj plus the number of

occurrences of t in the assignment for X2 plus the number of occurrences of t in the

assignment for x^ must equal 2 times the number of occurrences of t in the assignment for yj

plus the number of occurrences of t in the assignment for y2 Fn- example, {x|H(bb),

 - ■■■ - ■■ - ■ "^—-

» I ■■

X2*-U«b), K3«-», y|«-b, y2,-f(a«bbb)} is • unifi»r of f(X|KjK2X3) »™* •(yiy|y2) «""€• 'b«r» ar«

2 as and 5 b's in lh« mtUnlutions of fUiX!^)^) and f(yiyiy2) w'*h ,h» unified t«rm b«ing

f(aabbbbb)

With «ach pair of farms with an associativa and commutativa function with only varwbl«

argumants is associated a singla aquation raprasanting the number and multiplicity of variables

in each term For example, the equation 2xj«X2»X3 « 2yj»y2 is associated with the pair of

terms given above This equation succmtly represents the condition for a substitution to be a

unifier: that the sum of the number of occurrences of any t irm in the value of each variable

multiplied by the multiplicity of the variable in the term must be equal for the two terms.

Non-negative integral solutions to such equations can be used to represent unifiers.

The solutions must be non-negativ«* integral since each variable must be assigned a

non-negative integral number of occurrences of each term

In order to generate all the solutions to the problem of unifying the two terms, it is

necessary to be able to represent all the solutions to the equation derived from the terms.

Every non-negative integral solution to the equation is representable as a sum of elements of

a particular finite set of non-negative integral solutions to the equation, i.e., every

non-negative integral solution to the equation is a sum (equivalently, a sum with non-negative

integral weights) of elements of a particular finite set of non-negative integral solutions. The

finite set of non-negative integral solutions by whose addition the entire non-negative integral

solution space is spanned is generable by generating in ascending order of value solutions to

the equation, eliminating those solutions composable from those previously generated. This

process can be made finite by placing a bound on the maximum solution value which will be

used; such a maximum is proved in a later lemma to eliminate no needed solutions.

- - ■

-^"

1
»1
0

»2
0

'3
1 0

2 0 1 0 0
3 0 0 2 1
4 0 1 1 1
5 0 2 0 1
6 1 0 0 0
7 1 0 0 1

Consider lh« «quation 2XI»X2*ä3 « 2y*y2 Solutions to th« equation are:

X2 2AilÄ2li3 2X11^2
II ! z|
11 ! z2
0 2 2 z3
0 2 2 Z4

0 2 2 z5
2 2 2 26

0 2 2 z7

Associated with «ach solution above is a new variable (in th« rightmost column). Th«

assignment of as many occurrences of that variable as specified in the solution to each of th«

variables of th« original term results in a partial solution to the unification of the th« original

terms In particular, th« assignment of 2 occurrences of variable Z3 to X3 and 1 occurrence to

yi results in an «qual number of occurrenc«s of variabl« 23 in «ach of f(X|X 1X2X3) and

Uyiy2)

Every non-negative integral solution to the equation is a (non-negative integer

weighted) sum of th« 7 solutions presented above, i.e., every solution is representable as

xj"Z6*27, X2"Z2*24*2z5, X3S21»2z3»Z4, yj=Z3»24»25»z7, y2«Z|*Z2*2z6 for som«

non-n«gafiv« int«gral valu«s of zj,...^. How«v«r, not «very solution to th« equation is a

solution to th« unification problem for which the equation was derived. There is an additional

constraint that each variabl« of th« original terms must be have at least one term in its value;

it cannot hav« zero terms in its valu«.

Hence, we must form that subset of the 27 = 128 sums lor which each element of th«

5-tupl« is non-z«ro. (It is not necessary to consider sums in which any solution has a

coefficient other than 0 or 1 sine« such solutions (in th« unification problem) ar« already

representable sine« th« solution's inclusion with coefficient 1 introduces a variabl« which can

hav« as its valu« an arbitrary number of terms as arguments of f thus simulating th« cas« of

th« coefficient being greater than 1.) There ar« 69 such sums including for example

(representing th« sum by th« set of its indices) {2,3,6}, {1,2,3,6}, and {4,6} with associated

unifi«rs

7

I!

——

|K,«-26, X2-Z2, X3-f(2323)1 y1»-73I y2-<(z2^6').

{*l-26, x2-22, X3«-f(j|7323;, y1^231 y^ffcjz^g)), and

Note that if a variabl« could have as its value 2ero terms rather than one or more

terms as in the first order predicate calculus, it would be unnecessary to form this subset of

2n (where n is the number of solutions) sums. Only the sum of all the solutions would be

required since any variable present in this sum could have value zero, and the variables in the

corresponding unifier could be matched against 2ero terms This is the situation with fragment

variables n the bag Ma type in QA4 and QLISP [7,4] (see [9]).

To be more precise in the definition of the *ifcc'ithm, the algor ...m consists of the

following steps:

1. Form an equation from the two terms where the coefficient of each variable in the equation

is equal to the multiplicity of the corresponding variable in the term.

2. Generate all non-negative integral solutions to the equation eliminating all those solutions

composable from other solutions

3. Associate with each solution a new v nable.

4. For each sum of the solutions (no sol ition occurring in the sum more than once) with no

zrro components assemble a unifier compoied of assignments to the original variables with as

n any of each new variable as specified by thi solution element in the sum associated with the

new variable and the original variable.

Now we present the complete algorithm for unifying general terms with associative and

commutative functions using the algorithm for the variable only case above. We are here

concerned with terms whose function is associative and commutative with arbitrary arguments,

i.e., arguments that may contain ordinary (non-assoriative, non-commutative) functions or f or

other functions which are associative and commutative. We assume the presence of ordinary

unification to deal with those aspects of the unification problem not dealt with explicitly here.

■ --

—

First, when unifying two terms, two now terms with only variable arguments are formed

by uniformly replacing distinct arguments by now variables. These new terms have only

variable arguments and are generalizations of the original two forms. For example, in unifying

f(xxya) and f(bbz), we form generalizations f(x|X|X2X3) and Uyiy^) with substitution

{xj«-x, X2*-y, xj^-a, y|«-b, y2*"») instantiating the new terms to the original terms.

Next, using the previous algorithm for the variabio only case, we unify the

generalizations of the original terms. This has already been done for the example above

resulting in 69 unifiers as stated previously.

Now we have the generalizations of the two original terms, a substitution to instantiate

them to the original terms, and a complete set of the r unifiers. Every unifier of the original

terms ir a simultaneous instance of the substitution to instantiate the generalizations to the

original term« and a unifier of the generalizations. So all that is necessary to get all the

unifiers of the original terms is to unify (for each variable being substituted for) the value in

the substitutior. and the value in the unifiers.

In the example, X3 must have value a and y| must have value b. Thus, any unifier of

f(xjX|X2x3) *nd Uy-Yi)^) which assigns to <« or y2 a non-variable, i.e., a term of the form

f(...) may be immediately excluded from consideration since the unification of it with the

assignment including Xj«-a and y^b will fail. (This constraint could be applied during the

generation of sums of solutions to the equation rather than afterwards.) This constraint

eliminates 63 of the 69 unifiers, leaving sums (1) (4,6), (2) {2,4,6}, (3) (1,5,6), (4) {1,2,5,6},

(5) {1,2,7}, and (6) {1.2,6,7} with associated unifiers

(i) {«i^e- 1(2,"I4' «s4"^- yi*"^« y2H(2626,l-

(2) {x^zg, x2H(z2-:4), X3«-z4, yi^, Y2-*b2z676))<

(3) {«i'-ze' K2H(25Z5,• X34"21' y|*"25' y2H(ilJ626)}'

H) {*l*Hi >«2H(z225z5,• X3,"21' y|*"25' y2H(2lz2z626,^

(5) {xi«-z7, X2*-22' "f**!« ^1*^7« y2HtzlI2)l' •nd

(6) {xi«-f(z6z7), x2«-Z2, xa4"^, yj«-z7, Yz^^i^HH^

9

^p

Unifyinf »«ch ol lh«s« with {X|«-x, *2*'y> x3•",• Vl^- Vz*"^' w* ob*"'n

(1) no unifier sine« z^-a and i^-h are not unifiabl«,

(2) nn unifier sinr^ 24«-a and z^b are not unifiabl«,

(3) {x«-26, y*-f(bb), zH(az6z6)) (• {yH(bb), zH{axx))),

(4) {x«-z6, y«-f(bbz2), z-f(az2Z6z6)} (• {y*-f(bbz2), vf^xx)}),

(5) {x*-b, y«-Z2, 2«-f(az2)} (« {x«-b, z«-f(ay)))), and

(6) {xHCbzg), y*-z2l z-f(az2z6z6)} (- {x-f(bz6), zH(ayz6z6)}).

This is a complete set of unifiers of f(xxya) and f(bbz).

Since X3 and y] of the variable only case correspond to a and b respectively, and a and

b are not unifiable, any sum including solution 4 to the equation 2***2,*3 ' ^1^2 can be

excluded from consideration since it would require (as in (1) and (2) above) the unification of

a and b. As with the constraint on variables corresponding to non-variable terms not being

assigned more than one variable (terms of the form f(...)) in the variable only case, this latter

constraint on solutions can be applied during the generation of unifiers in the variable only

case rathter than afterwards Elimination of solution 4 before generation of the 2n sums, and

elimination of sums which do not meet the first constraint would result in the formation only of

unifiers (3), (4), (5), and (6) of the variable only case, each of which has a corresponding

unifier in the general case.

More precisely, the algorithm consists of the following steps:

1. Form generalizations of the two terms replacing each distinct argument by a new variable.

2. Use the algorithm for the variable only case to generate unifiers for the generalizations of

the two terms. The variable only case algorithm may be constrained to eliminate the

generation of unifiers assigning more than one term to variables whose value must be a single

term, and the generation of unifiers which will require the later unification of terms which are

obviously not unifialle.

3. Unify for each vaiable in the substitution from step 1 and the unifiers from step 2 the

10

■

■^

variibl« valj«t and raturn MM ratuliing Mtitninanti for variabt«« of th* original torms. Thi«

it ■ complol« sot of unifiorc of tho original tormi.

Proof Of Termination. «Joundne«. »nri rQmD\a\anm^
Ql thfl AC Unification Alyorit^^

W« will first «stablish tho validity of •liminating arguments common to tho two Urms.

This will bo dona by proving that any unifior of tho forms is a unifior of th« farms with a pair

of common arguments ramovod and vico vorsa.

IhMOlMm Lat «i,,«m,t,,..ltn bo farms with s^ for somo i,j. Lot # bo a unifior cf

f(«,...sm) and ICt,„.tt), and lot , bo a unifi»/ of fUi-«^,«^,..«„,) and f«,...^.,^,...!„). Then

(O # is a unifior of H^-^t^...^) and fd,...^,^,...^), and (2) » is a unifior of Us,..^)

•ndf«, ..tn).

Proof.

1. fM<«l ••«i-l'i»! 8m^ ■ K»|"V* • Wl-W ' Ut^O,...^,^,...^)!), and i^jf.

Thoroforo fUi-Sj.,^,,..^.» - Ut,,..^,^...!,,)* and i is a unifior of fUi-tj.,«^,..^) and

2.Ht|.~t|-l^|...tJo - f(t,...tj.itjM...tn)ff and tjotj». Thoroforo

,(8i',("l- •8i-l,i»l- 8m>») " f(«l «m>» " '»l V " ««f*«! •Vjtj.j.^W •nd a is a unifior of

f(s1...sm)andf(t1...tn). QED.

Tho lomma bolow ostabiishos that ovory non-nagativo integral solution tc an equal on of

the form ajx,«..^,,, . b,y1»...*bnyn is composable as a (non-negative integral weighted)

sum of a fixed finite set of non-negative integral solutions. It also establishes a solution value

within which all the non-negative integral solutions in the sat may be found.

Ltmmi. Every non-negative integral solution (x,,..^.y,,...^) to the equation

■I'V-^n/m " biyi**bnyn w'<h P<»'«'v« integral coefficients a,,....a^bj,...^ is an additive

11

 - - -~^-

mmmm ■»■■"»■

linear combination of non-n«ca1iv« integral solutions with viluc a|X|*...*imxm ''tiyj* ♦bnyn)

lost than or wqual to the maximum of m and n Wtrj* th« maximum of th« loaat common

multiples of pairs of numbers on« from aj,...,am and r.io from bj, (bn

Proof. Assume with no loss of ganarality tl'it th« least common multiple (lem) of rij and

b| is th« maximum of th« leas» common multiples and that m>n

Proof by mo jction on th« valu« of a solution k.

K'O. Th« solution with K«0 with X|«0, ..., '<m
r0, y^O, ..., yn«0 is generable as th«

additiv« linear combination of non-negative integral solutions with valu« less than c «qual to

m*lcm(a|,b|) with zero co«ffici«nts.

Assum« th« lemma is tru« for every non-negative integral solution with valu« less than

or «qual to K. Prove it is tru« for k

Cas« 1. K < m»lcm(a|,bj) In this cas«, th« solution is included among th« non-negative

integral solutions with valu« less than or «qual to m*lcm(i-| ,b]) and th« lemma is tru«.

Cas« 2. k > m*lcm(B|,bj) Sine« a|X|*...*a|nxm ■ k > m«lcm(a|,b|), and «ach ajXj>0, at

least on« a,*, must b« greater than lcm(a|,b|), and Xj must be greater than lcm(a| ,b| Va,

Similarly, sine« b|y|» •bnyn « k > m*lcm(a| .b,), and each b:y:>0, and n^m, at least on« t /.

must b« greater thin lcm(a|fb|), and y must b« greater than lcm(a|,b|)/b:. Consider th«

solution with x|=lcm(a|,bJ)/a|, y ^Icmla^b)/b:, and all other variables zero This is just th«

solution in lowest terms involving only Xj and y. and has valu« lcm(aj,bj) < lcm(a|,b|) Sine«

lcm(a|tb|)/aj > km{al,b)/tl and lcm(a|,b|)/b: > km(sl,bl)/b by th« maximality of Icmlapbj),

th« solution involving only x(and y can b« subtracted from '.he solution with valu« k leaving a

non-negative integral solution as result. But this difference solution has valu« k-lcm(«j,b:) < K

and is thus composabl« from solutions with valu« less than or «qual to m*lcm(a1,b1)

Therefore, th« solution with valu« k > micicmla^bj) is th« sum of som« solution involving only

Xj and y with valu« less than or «qual to IcmCa^bp and som« other set o(solutions with

valu« less than or «qual to m*lcm(a1,b|) and th« lemma is tru« for this cas«. QED.

12

f^BP

Th« loroma proves an upper bound on solution values that must b« examined in the

determination of • complete se' of non-negative Integra! solutions which span the

non-negative integral solution space by addition. We believe that tighter bounds can be

proved Although a proof for a tighter bound would be desirable, it should be noted that a

lower proven bound would not reduce the number of found solutions theoretically necessary,

but only decreases the cost of computing them, and would have no effert on the form or

number of unifie s returned by the algorithm. This is true since any additional solutions

discovered usin^ a I igher bound than necessary must oe composable from solutions bounded

by any proven lower bound and would therefore be recognized as redundant and be omitted.

The maximum of the least common multiples of the coefficients one from the left side

and one from the right side of the equation is a low, bound on solution values which must be

examined, i e, solutions with at least this value must be examined This is because one of the

needed solutions not otherwise generable is the solution involving only the variables with

those two coefficients with maximum least common multiple and having value equal to the

maximum least common multiple

IhflOram The AC unification algorithm for terms with associative and commutative

function with only variables as arguments always terminates, is sound (returns no substitutions

which are not unifiers), ard is complete (every unifier is an instance of a returned unifier).

Proof. The algorithm is guaranteed to terminate since it performs a finite nunber of

operations on the finite number of non-negative integral solutions generated from the «quation

corresponding to the two terms The generation of these solutions is finite due to the trial

solution values being bounded.

Th? algorithm is sound since each so*1' jn of the derived equation causes the

introduction into each of the instantiated terms of an equal number of new variable

occurrences. Thus, the 1*0 instantiated terms have the sare number of occurrences of each

new variable and are therefore unified.

13

-.„-> .. - .■-.^J . . _ -.. . „■._^„_..— —-^ —..- -.. .-.^.^,. ^ „...^ . _ . .„. J..-

ffggg^fff^i^lffmmmmmimmmmmimm'mmmmi^^^mttmmimmimmr^^' «mimm^~~ i H

Any uniti*r must M^gn to each variabl« a l*rm of th« form tj (whose function symbol is

not f) or a term f«,"!..Im
nm) (with n, occurr«nc«s of form tj us ariumtnts of f). Lol k bo tho

c-rdmälily of th. t.l of such forms t, in any solution to th« unification of a pair of torms with

only variables as arguments Th« two instantiated .«rms must havo an oqual nj-nbor of

eccurroncos of .Kh o» th.so K t.rm. as arfum.nts of f. That is,

•leil**amcim " bldil* *bndin (1^K) wh•'■• "« •« th« numbar of distinct variabl«s in th« first

t«rm b«ing unifi«d, n is th« numb«r of distinct variablos in th« s«conc< t«rml a is th«

multiplicity of th« j«h variabl« in th« first t«rmf bj is th« multiplicity of th« j<h v.habl« in th«

second t«rmP c^ it th« numb«r of occurr«nc«8 of t<.rm i in variabl« j in th« first t«rm(and dj

is th« number of occurr«nc«s of t«rm i in variabl« j in th« second t«rm.

Each tupl« (Cj!, .c^.dj,, ,din) is a solution to th« «quation

•lKl* 'Vm " bl/l* 4bnyn wrasponding to th« t«rms being unifi«d. It can thus (according

to th« lemma) be form«d as th« sum of c«rtain non-n«gativ« rnt«gral solutions to th« «quation

weighted by positiv« integers.

Consider the unifier corresponding to the sum of all those solutions to the equation

which are required in the formation of any of the tuples (cil,...IcjfnIdJ1,..fHjn). We will show

that th« hypoth«siz«d unifi«r is an instanc« of this unifi«r returned by th« algorithm.

Include in the value of the new variable associated with each of these solutions «

number of occurrences of term i equal to the coefficient of the solution in the weighted sum.

This will result in the proper assignment of c^ occurrences of term i to each variable j of th«

Jirst t«rm and djj occurrences of term i to each variable j of the second term.

Do this for «Kh of th« k t«rms in th« solution. L«t no other or additional t«rms be

includ«d in th« values of th« new variables.

This assignment of terms in the solution to new variablas associated with «quation

solution« generated in th« unification process results in the correct number c^ or dr of «ach

t«rm being assigned to «ach variable of the original two terms.

14

i

II j ■■—■ii i i —— ttmmmmmm^^mwmm^mm^m.

Thus, any solution to the unification of two terms with only variables as arguments is en

instance of a returned unifier and the algorithm is complete Q£D.

IhflOrfltn Ihe AC unification algorithm for general terms with associative and

commutative function always terminates, is sound, and is complete

Proof Let s and t be any two terms be^ng unified Let s* and t* be the terms

resulting from reolacmg each i.ilmct term by a new variable s* and t* are generalizations

of s and t respectively, te, s*^s *t'\ for some $ of tue form { ,Xj»-Cj,..} where each Xj

is a new variable and each c, is the term in s or t it replaces in s* or t*

Let {ffj} denote the unifiers of s* and t* returned by tin. <n;'icaticn algorithm for terms

with associative and commutative function with only vari.ibie; as arguments Each o is of the

form { ,Xj«-dj,) where each x, is a variable of s* or t* 6-.d d, is th& term assigned to it by

the unification algorithn According to the previous theorem, unification terminates, is sound,

and is complete for this case

Simultaneous msiance« of * and a. represent unifiers of I and t since 6*#=s, t**=t, and

unifying each Cj with each dj of a returned unifier y of s* and t>;: results in (by the

assumption of termination, soundness, and completeness of the recursive call on the unification

algorithm for terms of iesser complexity) a complete set of unifiers for the original terms s

and t. QED.

Conclusion

We have presented an algorithm for unifying general terms with associative end

commutative function. We have proven th. the algorithm is guaranteed to terminate, is sound,

and is complete

Tha advantages of this algorithm as compared to other approaches to un-'ying such

15

II."" 1' I ■ ■ •■^•WW^IMW^PI^^Wi --^mmmmmmmm

terms ar« that Ih« Msociftivity and commutativity properties need not be axiomatized and that

all the unififc s r' a pair of such terms are immediatel)' returned eliminating the unnecessary

and redundant coirputation often occurring in other approa^hos which generate only some of

the unifiers at each step with nc indication of wirten all the LWS have been generated.

BibiiQiriBhy

1 Chang, C. L and Lee, R. C. T. Symbolic Ijtgic and Mechanical Theorem Proving.
Academic Pi ess, New York, 1973.

2 Nevins, A. J. A human ork ted logic for automatic theorem proving. /. ACM 21, A (Oct.
1974), 606-621.

3 Plotkin, G. D. Building-in equational theories. In Melt^r, B. and Michie, D. (Eds). Machine
Inlrlligcncc 7, Edinburgh Univarsity Press, Edinburgh, 1972, pp. 73-90.

4 ^eboh, R. and Sacerdoti, E. A preliminary QLISP manual. Technical Note 81, Artificial
Intelligence Center, Stanford <?(search Institute, Meolo Park, Calif., Aug. 1973.

5 Robinson, G. and Wos, L. Paramodulftion and theorem-proving in first-order theories with
equality. In Meltzer, B. and Michie, D. (Eds). Machine lntclligen-c 4, Edinburgh University
Press, Edinburgh, 1969, pp ! 35-150.

6 Robinson, J. A. A machine-oriented logic based on the resolution principle. /. ACM 12, 1
(Jan. 1965), 23-41.

7 Rulifson, J. P., Derksen, J. A. and Waldinger, R. J. 0A4: a procedural calculus for intuitive
rea^oninr, Technical Note 73, Artificial Intelligence Center, Stanford Research Institute,
Menlo ParA, Calif., Nov. 1972.

8 Slagle, J. R. Automated theorem-proving for theories with simplifiers, commutativity, and
associativity. J. ACM 21, 4 (Ocf 1974), 622-642.

9 SticKel, M. E. Unification algorithms for artificii* intelligence languages. Chapter of
incomplete Ph.D. Dissertation, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Penn.

16

